论文标题
负β变度的固有登记性的贡献
Contribution on The Intrinsic Ergodicity of the Negative Beta-shift
论文作者
论文摘要
令$β$为一个小于-1的实际数字。在本文中,我们通过负$β$ shift的最大熵证明了该度量的独特性。赋予了这种符号动力学系统,在某些条件下对这种符号动力学系统进行了编码,但是在所有情况下,都表明具有最大熵的度量是由通过经常出现的正代码编码的支持携带的。正$β$降低之间的差异之一是系统中存在一些$β$的负值。这些是负$β$ - 代表(圆柱体)的间隔相对于最大熵的度量而言可以忽略不计,这是倒国家的量度。
Let $ β$ be a real number less than -1. In this paper, we prove the uniqueness of the measure with maximal entropy of the negative $β$-shift. Endowed with the shift, this symbolic dynamical system is coded under certain conditions, but in all cases, it is shown that the measure with maximal entropy is carried by a support coded by a recurrent positive code. One of the difference between the positive and the negative $β$-shift is the existence of gaps in the system for certain negative values of $ β$ . These are intervals of negative $β$-representations (cylinders) negligible with respect to the measure with maximal entropy, which is a measure of Champernown.