论文标题
在$ s_n $ -module $ lie_n $的好奇变体上
On a curious variant of the $S_n$-module $Lie_n$
论文作者
论文摘要
We introduce a variant of the much-studied $Lie$ representation of the symmetric group $S_n$, which we denote by $Lie_n^{(2)}.$ Our variant gives rise to a decomposition of the regular representation as a sum of {exterior} powers of modules $Lie_n^{(2)}.$ This is in contrast to the theorems of Poincaré-Birkhoff-Witt and将常规表示形式分解为对称的$ lie $模块的总和。 We show that nearly every known property of $Lie_n$ has a counterpart for the module $Lie_n^{(2)},$ suggesting connections to the cohomology of configuration spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words arising from Hochschild homology, due汉隆和赫什。
We introduce a variant of the much-studied $Lie$ representation of the symmetric group $S_n$, which we denote by $Lie_n^{(2)}.$ Our variant gives rise to a decomposition of the regular representation as a sum of {exterior} powers of modules $Lie_n^{(2)}.$ This is in contrast to the theorems of Poincaré-Birkhoff-Witt and Thrall which decompose the regular representation into a sum of symmetrised $Lie$ modules. We show that nearly every known property of $Lie_n$ has a counterpart for the module $Lie_n^{(2)},$ suggesting connections to the cohomology of configuration spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words arising from Hochschild homology, due to Hanlon and Hersh.