论文标题

可移动的在线背包和建议

Removable Online Knapsack and Advice

论文作者

Böckenhauer, Hans-Joachim, Frei, Fabian, Rossmanith, Peter

论文摘要

在背包问题中,我们给出了一定能力和一组物品的背包,每个物品都有大小和价值。目的是包装适合背包的这些项目的选择,以最大化总价值。此问题的在线版本一一揭示项目。对于每个项目,算法必须立即决定是否包装它。我们考虑了此问题的自然变体,即可置于可移动的在线背包。通过允许去除包装的项目,它与经典变体不同。但是,重新包装是不可能的:一旦将项目删除,它就永远消失了。 我们分析了此问题的建议复杂性。它衡量了无所不知的甲骨文需要提供的在线算法以达到任何给定的竞争比率有多少建议,这在严格的意义上是近似因素。我们表明,竞争比率从无限制的无限制跳到了近乎最佳的,只有许多建议部分,这一行为在迄今为止所研究的所有问题中都独一无二。我们还几乎没有任何建议(例如一位)检查算法,并分析比例背包问题的特殊情况,其中项目的大小始终等于其值。 我们表明,建议算法具有各种具体应用,并且有关任何问题的建议复杂性的下限都非常强大。我们的结果改善了一些最著名的下限,即随机算法的竞争比率,甚至可以在已建立的模型中的确定性确定性算法(例如带有资源缓冲区的背包和多种背包的各种问题)中确定性确定性算法。带有可移动性提出的背包的开创性论文提出了一个问题,我们甚至可以与建议模型建立一对一的对应关系;因此,本文还为这个被忽视的问题提供了全面的分析。

In the knapsack problem, we are given a knapsack of some capacity and a set of items, each with a size and a value. The goal is to pack a selection of these items fitting the knapsack that maximizes the total value. The online version of this problem reveals the items one by one. For each item, the algorithm must decide immediately whether to pack it or not. We consider a natural variant of this problem, coined removable online knapsack. It differs from the classical variant by allowing the removal of packed items. Repacking is impossible, however: Once an item is removed, it is gone for good. We analyze the advice complexity of this problem. It measures how many advice bits an omniscient oracle needs to provide for an online algorithm to reach any given competitive ratio, which is, understood in its strict sense, just the approximation factor. We show that the competitive ratio jumps from unbounded without advice to near-optimal with just constantly many advice bits, a behavior unique among all problems examined so far. We also examine algorithms with barely any advice, for example just a single bit, and analyze the special case of the proportional knapsack problem, where an item's size always equals its value. We show that advice algorithms have various concrete applications and that lower bounds on the advice complexity of any problem are exceptionally strong. Our results improve some of the best known lower bounds on the competitive ratio for randomized algorithms and even for deterministic deterministic algorithms in established models such as knapsack with a resource buffer and various problems with multiple knapsacks. The seminal paper introducing knapsack with removability proposed such a problem for which we can even establish a one-to-one correspondence with the advice model; this paper therefore also provides a comprehensive analysis for this neglected problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源