论文标题

XUV辐照系外行星中大气质量损失和潮汐进化的耦合分析:Trappist-1案例研究

A Coupled Analysis of Atmospheric Mass Loss and Tidal Evolution in XUV Irradiated Exoplanets: the TRAPPIST-1 Case Study

论文作者

Becker, Juliette, Gallo, Elena, Hodges-Kluck, Edmund, Adams, Fred C., Barnes, Rory

论文摘要

居住在恒星附近的系外行星由于宿主星星的影响而可以体验其物理结构和轨道的演变。在这项工作中,我们介绍了XUV辐照环境中系外行星的动态潮汐耗散和大气质量损失的耦合分析。作为我们的主要应用,我们使用此模型来研究trappist-1系统,并将限制对行星的内部结构和轨道演变放置。首先,基于300 ks的Neil Gehrels Swift天文台数据,对Star Trappist-1的紫外线连续通量测量(以$ \ sim1900 $的吻合为中心)开始,这可以估算每个星球的Xuv驱动的热逃亡。我们发现,从我们的X射线检测中衡量的X射线耀斑亮度为5.6 $ \ times $ 10 $^{ - 4} l _ {**} $,而包括非频率的完整通量为6.1 $ \ times $ \ times $ \ times $ 10 $^{ - 5} $ iS,$ iS n时,光度。然后,我们构建了一个包括大气质量损失和潮汐演化的模型,并要求行星在这种耦合演化期间达到当今的轨道元素。我们使用此模型来约束每个行星的比率$ q'= 3Q/2K_ {2} $。最后,我们使用通过虚拟行星模拟器\ texttt {vplanet}实现的其他数值模型,使用我们的派生系统参数来研究这些行星的海洋保留。

Exoplanets residing close to their stars can experience evolution of both their physical structures and their orbits due to the influence of their host stars. In this work, we present a coupled analysis of dynamical tidal dissipation and atmospheric mass loss for exoplanets in XUV irradiated environments. As our primary application, we use this model to study the TRAPPIST-1 system, and place constraints on the interior structure and orbital evolution of the planets. We start by reporting on a UV continuum flux measurement (centered around $\sim1900$ Angstroms) for the star TRAPPIST-1, based on 300 ks of Neil Gehrels Swift Observatory data, and which enables an estimate of the XUV-driven thermal escape arising from XUV photo-dissociation for each planet. We find that the X-ray flaring luminosity, measured from our X-ray detections, of TRAPPIST-1 is 5.6 $\times$10$^{-4} L_{*}$, while the full flux including non-flaring periods is 6.1 $\times$10$^{-5} L_{*}$, when $L_{*}$ is TRAPPIST-1's bolometric luminosity. We then construct a model that includes both atmospheric mass-loss and tidal evolution, and requires the planets to attain their present-day orbital elements during this coupled evolution. We use this model to constrain the ratio $Q'=3Q/2k_{2}$ for each planet. Finally, we use additional numerical models implemented with the Virtual Planet Simulator \texttt{VPLanet} to study ocean retention for these planets using our derived system parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源