论文标题
更快的傅立叶变换?计算$ \ mathcal {o}(n^2)$ time的宇宙学模拟的小规模功率谱和双光谱
A Faster Fourier Transform? Computing Small-Scale Power Spectra and Bispectra for Cosmological Simulations in $\mathcal{O}(N^2)$ Time
论文作者
论文摘要
我们提出$ \ Mathcal {o}(n^2)$用于宇宙学模拟中小规模功率谱和双光谱的估计器。结合传统方法,这些频谱可以在大量尺度上有效计算,而与仅基于快速的傅立叶转换方法相比,计算时间的数量级要少。这些方法适用于任何示踪剂;模拟颗粒,光环或星系,并利用盒子和周期性的简单几何形状去除对大型随机粒子目录的几乎所有依赖性。通过在配置空间上工作,可以通过加权的粒子对加权总和达到某些半径,可以在较大的$ k $下减少,从而导致算法,而小尺度上的复杂性降低,则可以减少粒子对。这些不会遭受混叠或射击,允许将光谱计算为任意大型波数。估计器对模拟进行了严格得出和测试,并讨论了协方差。随附的代码时髦已公开发布,并结合了这些算法。此类估计器将在分析大量高分辨率模拟的分析中极大地使用。
We present $\mathcal{O}(N^2)$ estimators for the small-scale power spectrum and bispectrum in cosmological simulations. In combination with traditional methods, these allow spectra to be efficiently computed across a vast range of scales, requiring orders of magnitude less computation time than Fast Fourier Transform based approaches alone. These methods are applicable to any tracer; simulation particles, halos or galaxies, and take advantage of the simple geometry of the box and periodicity to remove almost all dependence on large random particle catalogs. By working in configuration-space, both power spectra and bispectra can be computed via a weighted sum of particle pairs up to some radius, which can be reduced at larger $k$, leading to algorithms with decreasing complexity on small scales. These do not suffer from aliasing or shot-noise, allowing spectra to be computed to arbitrarily large wavenumbers. The estimators are rigorously derived and tested against simulations, and their covariances discussed. The accompanying code, HIPSTER, has been publicly released, incorporating these algorithms. Such estimators will be of great use in the analysis of large sets of high-resolution simulations.