论文标题
Goniopolar Metal NASN $ _2 $ AS $ _2 $中的各向异性散射
Anisotropic Scattering in Goniopolar Metal NaSn$_2$As$_2$
论文作者
论文摘要
最近在轴依赖性传导极性或Goniopallity中发现的实验发现观察到,电荷载体可以像电子或孔一样进行像电子或孔一样的晶体学方向,具体取决于它们以NASN $ _2 $为$ _2 $的分层化合物传播的晶体学方向。为了阐明这种异常的运输行为,我们提出了对这种系统中电子散射的依据研究。我们在NASN $ _2 $中研究了不同的显微镜散射机制为$ _2 $,并在动量空间中呈现了其费米表面上的电子散射时间分布,该动量空间的各向异性被认为是轴依赖性传导极性的起源。此外,我们在不同的电子化学势和温度下在实际空间中获得了各向异性寿命张量,并讨论它们如何对宏观热电器有贡献。尽管我们发现面内和跨平面寿命的贡献表现出相似的趋势,但费米表面的凹点在存在磁场的情况下显着改变了电子运动,因此通过霍尔效应测量了传导极性。我们对NASN $ _2 $ as $ _2 $的计算和分析也表明,系统中流体动力电子流的强大可能性。最后,我们的工作对广泛的Goniopolar材料中各向异性电子的寿命具有影响,并提供了对开放费米表面上电子散射的关键,一般的见解。
Recent experimental discoveries in axis-dependent conduction polarity, or goniopolarity, have observed that the charge carriers can conduct like either electrons or holes depending on the crystallographic direction they travel along in layered compounds such as NaSn$_2$As$_2$. To elucidate this unusual transport behavior, we present an ab initio study of electron scattering in such systems. We study different microscopic scattering mechanisms in NaSn$_2$As$_2$ and present the electron-phonon scattering time distribution on its Fermi surface in momentum space, the anisotropy of which is proposed to be the origin of the axis-dependent conduction polarity. Further, we obtain the overall anisotropic lifetime tensors in real space at different electron chemical potentials and temperatures and discuss how they contribute to the macroscopic thermopower. While we find that the contribution of the in-plane and cross plane lifetimes exhibits a similar trend, the concave portion of the Fermi surface alters the electron motion significantly in the presence of a magnetic field, thus flipping the conduction polarity as measured via the Hall effect. Our calculations and analysis of NaSn$_2$As$_2$ also suggests the strong possibility of hydrodynamic electron flow in the system. Finally, our work has implications for anisotropic electron lifetimes in a broad class of goniopolar materials and provides key, general insights into electron scattering on open Fermi surfaces.