论文标题

界面共形异常

Interface Conformal Anomalies

论文作者

Herzog, Christopher P., Huang, Kuo-Wei, Vassilevich, Dmitri V.

论文摘要

我们考虑沿着编成一个共形界面粘合在一起的两个$ d \ geq 2 $保形场理论(CFTS)。这种系统的共形异常既包含批量和界面贡献。在弯曲空间的设置中,我们计算自由理论中的热核系数和接口中心电荷。结果与已知的边界CFT数据通过折叠技巧一致。在$ d = 4 $中,通常允许两个接口不变,因为事实证明有消失的接口费用。这些缺失的不变剂是由具有奇特奇偶校验的组成部分构建的,这些组件对于翻转缺陷的方向而构建。我们猜想,即使在相互作用的接口CFT的情况下,也可能对对称接口的组件构建的所有不变式也可能具有消失的对称接口系数。

We consider two $d \geq 2$ conformal field theories (CFTs) glued together along a codimension one conformal interface. The conformal anomaly of such a system contains both bulk and interface contributions. In a curved-space setup, we compute the heat kernel coefficients and interface central charges in free theories. The results are consistent with the known boundary CFT data via the folding trick. In $d=4$, two interface invariants generally allowed as anomalies turn out to have vanishing interface charges. These missing invariants are constructed from components with odd parity with respect to flipping the orientation of the defect. We conjecture that all invariants constructed from components with odd parity may have vanishing coefficient for symmetric interfaces, even in the case of interacting interface CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源