论文标题
在微小侧的三角形上
On triangles with a minuscule side
论文作者
论文摘要
令$ w \ subset o(v)$为root System $ r \ subset v $的Weyl组。如果$ a+b+c = 0 = a'+b'+c'$,$ a $,$ b $和$ b $和$ c $分别连接到$ a'$,$ b'$和$ b'$和$ c'$在v中,然后$(a,b,c)$(a,b,c)在$(a',b',b',b',b',c'in $ v a $ a $ coffect a $ to $ aftib a y y i i i i i i irred y y irred y irred y irred y irred a irred confornd y irred compontion coundect微量斗牛。
Let $W\subset O(V)$ be the Weyl group of a root system $R\subset V$. If $a+b+c=0=a'+b'+c'$ with $a$, $b$ and $c$ respectively conjugated to $a'$, $b'$ and $c'$ in V , then $(a,b,c)$ is conjugated to $(a',b',c')$ in $V^3$ when each projection of $a$ to an irreducible component of $V$ is co-linear to a minuscule coweight.