论文标题

Schelling模型中基础恒星拓扑的有趣效果

Intriguing effects of underlying star topology in Schelling's model with blocks

论文作者

Su, Guifeng, Xiong, Qi, Zhang, Yi

论文摘要

我们探讨了带有块的Schelling隔离模型框架中潜在恒星拓扑结构的有趣效果。恒星拓扑所带来的显着后果既是理论上的分析和数值模拟,也没有分别在不引入一小部分无私药物的情况下进行模拟。单独使用纯利客的模型的集体实用程序可以优化,并通过块的基础恒星拓扑来实现最佳的固定状态。更令人惊讶的是,一旦引入了一定比例的利他主义者,随着利他主义者的分数增加,平均效用逐渐降低。这与Schelling模型的结果形成了鲜明的对比,并具有块的晶格拓扑。此外,还引入了一种添加链接机制来弥合晶格和星形拓扑之间的差距,并将我们的分析扩展到更一般的场景。对于块的恒星拓扑,发现了平均效用函数的新颖缩放定律。

We explore the intriguing effects of underlying star topological structure in the framework of Schelling's segregation model with blocks. The significant consequences exerted by the star topology are both theoretically analysed and numerically simulated with and without introducing a fraction of altruistic agents, respectively. The collective utility of the model with pure egoists alone can be optimized and the optimum stationary state is achieved with the underlying star topology of blocks. More surprisingly, once a proportion of altruists are introduced, the average utility gradually decreases as altruists' fraction increases. This presents a sharp contrast to the results in Schelling's model with lattice topology of blocks. Furthermore, an adding-link mechanism is introduced to bridge the gap between the lattice and the star topologies, and extend our analysis to more general scenarios. A novel scaling law of the average utility function are found for star topology of blocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源