论文标题
低氧退火对$α$ -FE $ -FE $ _2 $ o $ $ _3 $的光电化学水分拆分特性的影响
Effect of Low Oxygen Annealing on Photoelectrochemical Water Splitting Properties of $α$-Fe$_2$O$_3$
论文作者
论文摘要
光电化学(PEC)水分割是将太阳能交谈到以氢形式的化学能将的有前途的方法。纳米结构的赤铁矿($α$ -fe $ _2 $ o $ _3 $)是高效荷载载体生成和收集的最具吸引力的材料之一,这是由于其较大的特定表面积和缩短到达表面所需的少数载体扩散长度。在目前的工作中,PEC水分拆分性能的$α$ -FE $ _2 $ o $ _3 $是通过在FTO玻璃上氧化铁层阳极氧化制备的,随后在低O $ _2 $ -AR环境中退火,研究了0.03%O $ $ _2 $。关键发现是,与经典的空气退火相比,降低氧气浓度的阳极纳米结构可提供强大的PEC性能。前者在1.5 V与RHE的光电流导致1.1 mA/cm2,比后者高11倍。在低氧气中退火的$α$ -FE $ _2 $ _2 $ _2 $ _2 $ _2 $的PEC性能的增强可以归因于受控的形态学,SN兴奋剂和氧空位的引入,这有助于增强孔的孔孔从光源地位和加成的孔中的转移,从而在反应性表面和孔中的转移,并在反应性的表面转移到反应性的孔中,在反应性的表面和孔中的转移, $α$ -fe $ _2 $ o $ _3 $和电解质。从获得的结果来看,很明显,低氧退火是一种令人惊讶的有效方法,用于缺陷工程和优化$α$ -FE $ _2 $ _2 $ o $ $ _3 $ electrodes,用于最大化PEC水分拆分性能。
Photoelectrochemical (PEC) water splitting is a promising method for conversing solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite ($α$-Fe$_2$O$_3$) is one of the most attractive materials for highly efficient charge carrier generation and collection due to its large specific surface area and shortening minority carrier diffusion length required to reach the surface. In the present work, PEC water splitting performance of $α$-Fe$_2$O$_3$ prepared by anodization of thin iron layers on an FTO glass and subsequent annealing in low O$_2$-Ar ambient with only 0.03% O$_2$ was investigated. The key finding is that annealing the anodic nanostructures with low oxygen concentration provides a strongly enhanced PEC performance compared with classic air annealing. The photocurrent of the former at 1.5 V vs. RHE results in 1.1 mA/cm2, being 11 times higher than that of the latter. The enhancement of the PEC performance for $α$-Fe$_2$O$_3$ annealed in low oxygen atmosphere can be attributed to controlled morphology, Sn doping, and introduction of oxygen vacancies, which contribute to the enhancement of the hole flux from the photogenerated site to the reactive surface and additionally lead to an enhanced hole transfer at the interface between the $α$-Fe$_2$O$_3$ and the electrolyte. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method of defect engineering and optimizing $α$-Fe$_2$O$_3$ electrodes for a maximized PEC water splitting performance.