论文标题
有条件的最大熵和超级巨星
Conditional maximum entropy and Superstatistics
论文作者
论文摘要
超级巨星将非平衡的稳态描述为具有温度概率分布的规范集合的叠加。最近没有假设温度分布[J。物理。答:数学。理论。 53,045004(2020)]我们已经讨论了一般条件,在该条件下,与有限环境接触的系统可以通过超级巨星的形式描述,以及对温度的物理解释的微观定义。在这项工作中,我们使用条件期望约束对标准最大熵原理(Maxent)进行了对此结果的新解释,并提供了可以测试此框架的示例模型。
Superstatistics describes nonequilibrium steady states as superpositions of canonical ensembles with a probability distribution of temperatures. Rather than assume a certain distribution of temperature, recently [J. Phys. A: Math. Theor. 53, 045004 (2020)] we have discussed general conditions under which a system in contact with a finite environment can be described by superstatistics together with a physically interpretable, microscopic definition of temperature. In this work, we present a new interpretation of this result in terms of the standard maximum entropy principle (MaxEnt) using conditional expectation constraints, and provide an example model where this framework can be tested.