论文标题

电子相关性的各向异性:关于局部理论对分层材料的适用性

Anisotropy of electronic correlations: On the applicability of local theories to layered materials

论文作者

Klebel, Benjamin, Schäfer, Thomas, Toschi, Alessandro, Tomczak, Jan M.

论文摘要

除了化学成分外,控制最重要的材料特性的晶格几何形状。在许多有趣的化合物中,元素的排列会导致各向异性,这些各向异性反映了其低能激发的不同程度的准二维。在这里,我们首先根据其从头算电子(频段)结构的四方各向异性的简单措施对重要的相关材料族进行分类。其次,我们研究了逐渐大型各向异性对驱动多体效应的非局部性的影响。为此,我们将各向同性立方体的Hubbard模型在三个维度上调整为二维极限,并使用动力学顶点近似进行分析。为了充分的各向同性跳跃,我们发现自我能源可分开成静态的非本地和动态局部贡献。尽管后者可以从动态平均场方法中获得,但我们发现前者在所有情况下都是不可忽略的。此外,通过增加模型 - 肛门疗法,我们量化了导致这种“时空分离”分解的准二维程度。我们的系统分析提高了对各向异性材料,异质结构和超薄膜中电子相关性的一般理解,并为未来的现实研究提供了有用的指导。

Besides the chemical constituents, it is the lattice geometry that controls the most important material properties. In many interesting compounds, the arrangement of elements leads to pronounced anisotropies, which reflect into a varying degree of quasi two-dimensionality of their low-energy excitations. Here, we start by classifying important families of correlated materials according to a simple measure for the tetragonal anisotropy of their ab initio electronic (band) structure. Second, we investigate the impact of a progressively large anisotropy in driving the non-locality of many-body effects. To this end, we tune the Hubbard model from isotropic cubic in three dimensions to the two-dimensional limit and analyze it using the dynamical vertex approximation. For sufficiently isotropic hoppings, we find the self-energy to be well separable into a static non-local and a dynamical local contribution. While the latter could potentially be obtained from dynamical mean-field approaches, we find the former to be non-negligible in all cases. Further, by increasing the model-anisotropy, we quantify the degree of quasi two-dimensionality which causes this "space-time separation" to break down. Our systematic analysis improves the general understanding of electronic correlations in anisotropic materials, heterostructures and ultra-thin films, and provides useful guidance for future realistic studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源