论文标题
抛物线归一化p(x,t) - 拉普拉斯方程的梯度支架规律性
Gradient Holder regularity for parabolic normalized p(x,t)-Laplace equation
论文作者
论文摘要
我们考虑粘度解决方案的空间梯度$ p(x,t)$ - 拉普拉斯方程$$ u_t = \ left(δ_{δ_{ij}+(p(x,x,t)-2)\ frac {u_i u_j u_j} {u_i u_j} { $ p(x,t)$,自然源于两人零和零随机差异游戏,具体取决于空间和时间。
We consider interior Hölder regularity of the spatial gradient of viscosity solutions to the normalized $p(x,t)$-Laplace equation $$ u_t=\left(δ_{ij}+(p(x,t)-2)\frac{u_i u_j}{|Du|^2}\right)u_{ij} $$ with some suitable assumptions on $p(x,t)$, which arises naturally from a two-player zero-sum stochastic differential game with probabilities depending on space and time.