论文标题

RCD空间的等距浸入

Isometric immersions of RCD spaces

论文作者

Honda, Shouhei

论文摘要

我们证明,如果RCD空间在欧几里得空间中有常规的等距浸入,那么浸入浸入是局部的Bi-Lipschitz嵌入图。该结果导致我们证明,如果紧凑的非汇总RCD空间通过特征模型在欧几里得空间中具有等轴测浸入,那么eigenmap是将bi-lipschitz嵌入到球体中的本地bi-lipschitz,将takeorem theorem of theorem of theorem theorem submanifold Themotion submanifold Themits置于非smmomt otmorts设置。这些结果的应用包括一个拓扑球定理和拓扑定理,即使对于封闭的Riemannian歧管,它们都是新的。

We prove that if an RCD space has a regular isometric immersion in a Euclidean space, then the immersion is a locally bi-Lipschitz embedding map. This result leads us to prove that if a compact non-collapsed RCD space has an isometric immersion in a Euclidean space via an eigenmap, then the eigenmap is a locally bi-Lipschitz embedding map to a sphere, which generalizes a fundamental theorem of Takahashi in submanifold theory to a non-smooth setting. Applications of these results include a topological sphere theorem and topological finiteness theorems, which are new even for closed Riemannian manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源