论文标题

丰富的作业的质量

Quillen cohomology of enriched operads

论文作者

Truong, Hoang

论文摘要

由于Lurie的进一步发展,由于Quillen引起的现代见解,他断言,许多感兴趣的共同体学理论是单一结构的特殊情况,它允许仅使用手头的类别(或$ \ iffty $ - 类别)的固有属性来定义抽象设置中的共同体学组。这种普遍的同胞理论被称为Quillen的共同体学。在任何情况下,给定对象的quillen coomomology均由其cotangent复合物分类。本文的主要目的是研究富集一般基础类别的质量共同体。我们的主要结果基于采用某些无限模型的cotangangent复合物模型来计算富集作战的quillen共同体的明确公式。此外,我们提出了扭曲的箭头$ \ infty $ - 简单作业类别的自然结构。然后,我们断言,简单的oprad的cotangent复合物可以在其扭曲的箭头$ \ infty $ -pategory上表示为频谱有价值的函子。 弗朗西斯(Francis)和卢里(Lurie)在稳定的基础类别(例如链络合物和光谱)等稳定基础类别时,证明存在纤维序列,该纤维序列与$ e_n $ -Algebra的cotangengent复合物和Hochschild复合物有关,从中验证了Kontsevich的猜想。我们在拓扑设置中为Operad $ e_n $本身建立了一个类似的光纤序列。

A modern insight due to Quillen, which is further developed by Lurie, asserts that many cohomology theories of interest are particular cases of a single construction, which allows one to define cohomology groups in an abstract setting using only intrinsic properties of the category (or $\infty$-category) at hand. This universal cohomology theory is known as Quillen cohomology. In any setting, Quillen cohomology of a given object is classified by its cotangent complex. The main purpose of this paper is to study Quillen cohomology of operads enriched over a general base category. Our main result provides an explicit formula for computing Quillen cohomology of enriched operads, based on a procedure of taking certain infinitesimal models of their cotangent complexes. Furthermore, we propose a natural construction of the twisted arrow $\infty$-categories of simplicial operads. We then assert that the cotangent complex of a simplicial operad can be represented as a spectrum valued functor on its twisted arrow $\infty$-category. When working in stable base categories such as chain complexes and spectra, Francis and Lurie proved the existence of a fiber sequence relating the cotangent complex and Hochschild complex of an $E_n$-algebra, from which a conjecture of Kontsevich is verified. We establish an analogous fiber sequence for the operad $E_n$ itself, in the topological setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源