论文标题
非kählerholomormormormorphic symbledeclic歧管的几何形状和自动形态
Geometry and automorphisms of non-Kähler holomorphic symplectic manifolds
论文作者
论文摘要
我们认为唯一一类已知的非kähller不可证实的霍尔态象征性歧管,在D. Guan和第一作者的作品中描述了。任何此类歧管$ q $ dimension $ 2n-2 $作为有限度$ n^2 $的封面获得了某些非kähler歧管$ w_f $,我们称为$ q $的基础。我们表明,代数减少$ Q $及其基础是尺寸$ n-1 $的投影空间。此外,我们以$ Q $的方式对Submanifolds进行部分分类,描述其代数减少的堕落基因座,并证明$ Q $ $ Q $的自动形态群体满足约旦财产。
We consider the only one known class of non-Kähler irreducible holomorphic symplectic manifolds, described in the works of D. Guan and the first author. Any such manifold $Q$ of dimension $2n-2$ is obtained as a finite degree $n^2$ cover of some non-Kähler manifold $W_F$ which we call the base of $Q$. We show that the algebraic reduction of $Q$ and its base is the projective space of dimension $n-1$. Besides, we give a partial classification of submanifolds in $Q$, describe the degeneracy locus of its algebraic reduction, and prove that the automorphism group of $Q$ satisfies the Jordan property.