论文标题

教授复发性神经网络以典范修改混乱的记忆

Teaching Recurrent Neural Networks to Modify Chaotic Memories by Example

论文作者

Kim, Jason Z., Lu, Zhixin, Nozari, Erfan, Pappas, George J., Bassett, Danielle S.

论文摘要

存储和操纵信息的能力是计算系统的标志。尽管计算机经过精心设计以代表和执行结构化数据的数学操作,但尽管组织和非结构化的感觉输入灵活,神经生物学系统仍会执行类似的功能。最近的努力在建模神经系统中信息的表示和回忆方面取得了进展。但是,精确的神经系统学会如何修改这些表示尚未被理解。在这里,我们证明了复发性神经网络(RNN)可以仅使用示例来修改其复杂信息的表示,我们用新理论解释了相关的学习机制。具体而言,我们从混乱的Lorenz系统中驱动了一个带有翻译,线性转换或预触发时间序列的示例的RNN,以及一个更改每个示例值的其他控制信号。通过训练网络复制洛伦兹的输入,它可以自主发展有关洛伦兹形的歧管。此外,它学会了通过更改控制信号来连续插入并推断该表示的翻译,转换和分叉远远超出了训练数据。最后,我们提供了一种如何学习这些计算的机制,并证明单个网络可以同时学习多个计算。总之,我们的结果提供了一种简单但有力的机制,RNN可以通过这些机制来学习操纵复杂信息的内部表示,从而可以进行原则性研究和RNN的精确设计。

The ability to store and manipulate information is a hallmark of computational systems. Whereas computers are carefully engineered to represent and perform mathematical operations on structured data, neurobiological systems perform analogous functions despite flexible organization and unstructured sensory input. Recent efforts have made progress in modeling the representation and recall of information in neural systems. However, precisely how neural systems learn to modify these representations remains far from understood. Here we demonstrate that a recurrent neural network (RNN) can learn to modify its representation of complex information using only examples, and we explain the associated learning mechanism with new theory. Specifically, we drive an RNN with examples of translated, linearly transformed, or pre-bifurcated time series from a chaotic Lorenz system, alongside an additional control signal that changes value for each example. By training the network to replicate the Lorenz inputs, it learns to autonomously evolve about a Lorenz-shaped manifold. Additionally, it learns to continuously interpolate and extrapolate the translation, transformation, and bifurcation of this representation far beyond the training data by changing the control signal. Finally, we provide a mechanism for how these computations are learned, and demonstrate that a single network can simultaneously learn multiple computations. Together, our results provide a simple but powerful mechanism by which an RNN can learn to manipulate internal representations of complex information, allowing for the principled study and precise design of RNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源