论文标题

高频加速度计的非参数时间序列汇总统计数据,来自患有晚期痴呆的人

Nonparametric Time Series Summary Statistics for High-Frequency Accelerometry Data from Individuals with Advanced Dementia

论文作者

Suibkitwanchai, Keerati, Sykulski, Adam M., Algorta, Guillermo Perez, Waller, Daniel, Walshe, Catherine

论文摘要

加速度测定数据已被广泛用于衡量活性的活动和整个健康科学中个体的昼夜节律,尤其是患有晚期痴呆症患者。现代加速度计可以以一个赫兹的顺序进行抽样频率记录几天对单个人的连续观察。如此丰富而冗长的数据集为统计见解提供了新的机会,但在从广泛可能的摘要统计数据中进行选择方面也构成了挑战,以及如何最佳地调整和实施此类统计数据的计算。在本文中,我们基于现有方法,并提出了新的摘要统计信息,并详细介绍了如何使用高频加速度计数据实现这些统计数据。我们在观察到的数据集中测试和验证我们的方法,这些数据集来自来自患有晚期痴呆症的个体的26个记录和没有痴呆症的人的14个记录。我们研究了四个指标:跨每日稳定性(IS),内部变异性(IV),降解波动分析(DFA)的缩放指数以及一种新型的非参数估计器,我们称之为差异(POV)的比例(POV),这些估计数(POV)计算了使用光谱估计的昼夜节律的强度。我们执行详细的分析,指示应如何最佳地进行时间采样以计算IV,并建议对已研究的数据集进行大约5分钟的亚采样率。此外,我们建议在白天和夜间分别使用DFA缩放指数,以进一步分开个体之间的效果。我们比较所有这些方法之间的关系,并表明它们有效地捕获了时间序列的不同特征。

Accelerometry data has been widely used to measure activity and the circadian rhythm of individuals across the health sciences, in particular with people with advanced dementia. Modern accelerometers can record continuous observations on a single individual for several days at a sampling frequency of the order of one hertz. Such rich and lengthy data sets provide new opportunities for statistical insight, but also pose challenges in selecting from a wide range of possible summary statistics, and how the calculation of such statistics should be optimally tuned and implemented. In this paper, we build on existing approaches, as well as propose new summary statistics, and detail how these should be implemented with high frequency accelerometry data. We test and validate our methods on an observed data set from 26 recordings from individuals with advanced dementia and 14 recordings from individuals without dementia. We study four metrics: Interdaily stability (IS), intradaily variability (IV), the scaling exponent from detrended fluctuation analysis (DFA), and a novel nonparametric estimator which we call the proportion of variance (PoV), which calculates the strength of the circadian rhythm using spectral density estimation. We perform a detailed analysis indicating how the time series should be optimally subsampled to calculate IV, and recommend a subsampling rate of approximately 5 minutes for the dataset that has been studied. In addition, we propose the use of the DFA scaling exponent separately for daytime and nighttime, to further separate effects between individuals. We compare the relationships between all these methods and show that they effectively capture different features of the time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源