论文标题
外部力量内态的多项式环表示
Polynomial ring representations of endomorphisms of exterior powers
论文作者
论文摘要
具有合理系数的多项式环是无限可计数尺寸$ \ mathbb {q} $ vector-vector Space的内态内态谎言代数的不可约表示。我们使用适当的顶点操作员在外部代数上进行了明确的描述,该操作员模仿了lie代数$ gl_ \ infty $的玻色孔顶点表示的人,这是由于日期 - jimbo-jimbo-kashiwara和miwa(djkm)。
A polynomial ring with rational coefficients is an irreducible representation of Lie algebras of endomorphisms of exterior powers of a infinite countable dimensional $\mathbb{Q}$-vector space. We give an explicit description of it, using suitable vertex operators on exterior algebras, which mimick those occurring in the bosonic vertex representation of the Lie algebra $gl_\infty$, due to Date--Jimbo--Kashiwara and Miwa (DJKM).