论文标题
在时钟过渡时分子纳米磁体中的量子相干自旋对照
Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions
论文作者
论文摘要
纳米级旋转的电气控制在Spintronics方面具有重要的结构优势,因为与磁场相比,电场可以限制在较短的长度尺度上。因此,在分子自旋材料中电场敏感性(电子场)敏感性的最新证明是诱人的,从而提高了宏观磁磁电设备的量子类似物的生存能力。到底,到目前为止,迄今为止报道的电子场敏感性相当虚弱,这是薄弱的,促使如何与强度旋转couneclectrric cookectrictrics cooke counecling coundere counterrics coundection。在这里,我们表明,一条路径是在自旋光谱中识别与具有显着的电极化性的结构性自由度相关的能量尺度。我们研究了一个分子纳米磁体的示例,其中较小的结构失真在自旋光谱中建立了时钟过渡(即,其能量到一阶的跃迁);这种失真与电偶极子相关的事实使我们能够以前所未有的程度控制时钟过渡能。我们证明了量子自旋态的连贯的电控制,并利用它以独立操纵晶体单位细胞中的两个磁相同但与反转相关的分子。我们的发现为在量子技术和旋转技术中使用分子旋转铺平了道路。
Electrical control of spins at the nanoscale offers significant architectural advantages in spintronics, because electric fields can be confined over shorter length scales than magnetic fields. Thus, recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising, raising the viability of the quantum analogues of macroscopic magneto-electric devices.However, the E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings. Here we show that one path is to identify an energy scale in the spin spectrum that is associated with a structural degree of freedom with a significant electrical polarisability. We study an example of a molecular nanomagnet in which a small structural distortion establishes clock transitions (i.e. transitions whose energy is to first order independent of magnetic field) in the spin spectrum; the fact that this distortion is associated with an electric dipole allows us to control the clock transition energy to an unprecedented degree. We demonstrate coherent electrical control of the quantum spin state and exploit it to manipulate independently the two magnetically-identical but inversion-related molecules in the unit cell of the crystal. Our findings pave the way for the use of molecular spins in quantum technologies and spintronics.