论文标题
becaptcha小鼠:合成小鼠轨迹和改进的机器人检测
BeCAPTCHA-Mouse: Synthetic Mouse Trajectories and Improved Bot Detection
论文作者
论文摘要
我们首先研究了行为生物识别技术可区分计算机和人类的适用性,该计算机通常称为机器人检测。然后,我们提出了基于以下机器人探测器的Becaptcha-Mouse:i)小鼠动力学的神经运动模型,以获得用于人类和机器人样品分类的新型特征; ii)涉及实际和合成生成的鼠标轨迹的学习框架。我们提出了两种新的鼠标轨迹合成方法,用于生成现实数据:a)基于启发式功能的基于函数的方法,b)基于生成对抗网络(GAN)的数据驱动方法,其中生成器从高斯噪声输入中合成了类似人类的轨迹。实验是在此处介绍的新测试床上进行的,并在GitHub中可用:Becaptcha-Mouse基准测试;可用于研究机器人检测和其他基于小鼠的HCI应用。我们的基准数据由15,000个鼠标轨迹组成,包括来自58位用户的真实数据以及具有不同级别现实主义的机器人数据。我们的实验表明,Becaptcha-Mouse能够检测出高现实主义的机器人轨迹,而平均只有一个小鼠轨迹的精度为93%。当我们的方法与最新的鼠标动态功能融合在一起时,机器人检测准确性相对增加了36%以上,证明基于鼠标的机器人检测是一种快速,简单且可靠的工具,可以补充传统的Captcha系统。
We first study the suitability of behavioral biometrics to distinguish between computers and humans, commonly named as bot detection. We then present BeCAPTCHA-Mouse, a bot detector based on: i) a neuromotor model of mouse dynamics to obtain a novel feature set for the classification of human and bot samples; and ii) a learning framework involving real and synthetically generated mouse trajectories. We propose two new mouse trajectory synthesis methods for generating realistic data: a) a function-based method based on heuristic functions, and b) a data-driven method based on Generative Adversarial Networks (GANs) in which a Generator synthesizes human-like trajectories from a Gaussian noise input. Experiments are conducted on a new testbed also introduced here and available in GitHub: BeCAPTCHA-Mouse Benchmark; useful for research in bot detection and other mouse-based HCI applications. Our benchmark data consists of 15,000 mouse trajectories including real data from 58 users and bot data with various levels of realism. Our experiments show that BeCAPTCHA-Mouse is able to detect bot trajectories of high realism with 93% of accuracy in average using only one mouse trajectory. When our approach is fused with state-of-the-art mouse dynamic features, the bot detection accuracy increases relatively by more than 36%, proving that mouse-based bot detection is a fast, easy, and reliable tool to complement traditional CAPTCHA systems.