论文标题

飞机上几乎是通用的匿名会合

Almost Universal Anonymous Rendezvous in the Plane

论文作者

Bouchard, Sébastien, Dieudonné, Yoann, Pelc, Andrzej, Petit, Franck

论文摘要

两名移动代理以飞机上自由移动并从两个不同的位置开始的移动代理必须满足。当代理商处于距离最多的距离时,这次会议被称为Rendezvous,并且在此之后从不移动,那里的$ r $是他们的积极真正未知,称为可见度半径。代理是匿名的,并执行相同的确定性算法。每个代理都有一组私人属性,其中一些或全部可能会在代理之间有所不同。这些属性是:代理的初始位置,其坐标系统(方向和手性),其时钟速率,移动时的速度以及其唤醒时间。如果所有属性(初始位置除外)都是相同的,并且代理以大于$ r $的距离开始,那么它们将永远无法满足。但是,属性之间的差异使有时可以打破对称性并完成集合。会合问题的实例(正式为属性列表)称为可行。 我们的贡献是三倍。我们首先给出可行实例的确切表征。因此,很自然地询问是否存在一种单一算法,可以保证所有这些实例的聚会。我们对这个问题给出了强烈的负面答案:我们展示了两个集合$ s_1 $和$ s_2 $的可行实例,以至于它们都不承认单个会合算法对该集合的所有实例有效。另一方面,我们构建了一种单个算法,该算法可以保证在集合$ s_1 $和$ s_2 $之外的所有可行实例上进行集合。我们观察到,与所有可行情况相比,这些例外集合$ s_1 $和$ s_2 $在几何上非常小:它们包含在后者的低维子空间中。因此,除了这些一小部分例外外,我们的会合算法处理所有可行的实例几乎可以被称为通用。

Two mobile agents represented by points freely moving in the plane and starting at two distinct positions, have to meet. The meeting, called rendezvous, occurs when agents are at distance at most $r$ of each other and never move after this time, where $r$ is a positive real unknown to them, called the visibility radius. Agents are anonymous and execute the same deterministic algorithm. Each agent has a set of private attributes, some or all of which can differ between agents. These attributes are: the initial position of the agent, its system of coordinates (orientation and chirality), the rate of its clock, its speed when it moves, and the time of its wake-up. If all attributes (except the initial positions) are identical and agents start at distance larger than $r$ then they can never meet. However, differences between attributes make it sometimes possible to break the symmetry and accomplish rendezvous. Such instances of the rendezvous problem (formalized as lists of attributes), are called feasible. Our contribution is three-fold. We first give an exact characterization of feasible instances. Thus it is natural to ask whether there exists a single algorithm that guarantees rendezvous for all these instances. We give a strong negative answer to this question: we show two sets $S_1$ and $S_2$ of feasible instances such that none of them admits a single rendezvous algorithm valid for all instances of the set. On the other hand, we construct a single algorithm that guarantees rendezvous for all feasible instances outside of sets $S_1$ and $S_2$. We observe that these exception sets $S_1$ and $S_2$ are geometrically very small, compared to the set of all feasible instances: they are included in low-dimension subspaces of the latter. Thus, our rendezvous algorithm handling all feasible instances other than these small sets of exceptions can be justly called almost universal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源