论文标题
电荷泵循环循环的非线性分析:固定和引进范围
Nonlinear analysis of charge-pump phase-locked loop: the hold-in and pull-in ranges
论文作者
论文摘要
在本文中,研究了一个相当完整的CP-PLL数学模型,该模型足够可靠,可以作为对这些电路动力学特性的可靠分析的工具。我们完善与本地和全球稳定性相关的持有和引进范围的相关数学定义。电荷泵相锁定回路的稳态分析是非平底的:可用CP-PLL模型的直线线性化可能会导致结论不正确,因为该系统在稳态附近并不顺利,并且可能会经历过载。在这项工作中,介绍了局部稳定性分析的必要细节,并计算了固定范围。通过分析极限循环获得了引进范围的上限估计。这项研究为加德纳关于CP-PLL和等效的经典PLL的瞬态响应的相似性以及对CP-PLL的无限引入范围的瞬态响应的相似性提供了答案。
In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions of the hold-in and pull-in ranges related to the local and global stability. Stability analysis of the steady state for the charge-pump phase locked loop is non-trivial: straight-forward linearization of available CP-PLL models may lead to incorrect conclusions, because the system is not smooth near the steady state and may experience overload. In this work necessary details for local stability analysis are presented and the hold-in range is computed. An upper estimate of the pull-in range is obtained via the analysis of limit cycles. The study provided an answer to Gardner's conjecture on the similarity of transient responses of CP-PLL and equivalent classical PLL and to conjectures on the infinite pull-in range of CP-PLL with proportionally-integrating filter.