论文标题

现代可训练激活功能的调查

A survey on modern trainable activation functions

论文作者

Apicella, Andrea, Donnarumma, Francesco, Isgrò, Francesco, Prevete, Roberto

论文摘要

在神经网络文献中,人们对识别和定义激活功能有浓厚的兴趣,这些功能可以改善神经网络的性能。近年来,科学界在研究激活功能方面进行了翻新的兴趣,该功能可以在学习过程中训练,通常称为“可训练”,“可学习”或“可自适应”的激活功能。它们似乎会带来更好的网络性能。文献中已经提出了可训练激活功能的多种多样模型。在本文中,我们介绍了这些模型的调查。从关于文献中“激活函数”一词的讨论开始,我们提出了可训练激活功能的分类法,强调了最近和过去模型的常见和独特的礼节,并讨论了这种方法的主要优点和局限性。我们表明,许多提出的方法等同于添加使用固定(不可训练的)激活功能的神经元层和一些限制相应权重层的简单局部规则。

In neural networks literature, there is a strong interest in identifying and defining activation functions which can improve neural network performance. In recent years there has been a renovated interest of the scientific community in investigating activation functions which can be trained during the learning process, usually referred to as "trainable", "learnable" or "adaptable" activation functions. They appear to lead to better network performance. Diverse and heterogeneous models of trainable activation function have been proposed in the literature. In this paper, we present a survey of these models. Starting from a discussion on the use of the term "activation function" in literature, we propose a taxonomy of trainable activation functions, highlight common and distinctive proprieties of recent and past models, and discuss main advantages and limitations of this type of approach. We show that many of the proposed approaches are equivalent to adding neuron layers which use fixed (non-trainable) activation functions and some simple local rule that constraints the corresponding weight layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源