论文标题
Leibniz代数的相对Rota-Baxter操作员的变形
Deformations of relative Rota-Baxter operators on Leibniz algebras
论文作者
论文摘要
在本文中,我们介绍了Leibniz代数的相对Rota-Baxter操作员的共同体学理论。我们使用的共同体方法研究相对旋转式运算符的线性和形式变形。特别是,引入了nijenhuis元素的概念以表征琐碎的线性变形。相对Rota-Baxter操作员的正式变形和扩展性也以同时理论为特征。
In this paper, we introduce the cohomology theory of relative Rota-Baxter operators on Leibniz algebras. We use the cohomological approach to study linear and formal deformations of relative Rota-Baxter operators. In particular, the notion of Nijenhuis elements is introduced to characterize trivial linear deformations. Formal deformations and extendibility of order n deformations of a relative Rota-Baxter operator are also characterized in terms of the cohomology theory.