论文标题

深度转动,自我注意力用于使用可穿戴设备解码的人类活动

Deep ConvLSTM with self-attention for human activity decoding using wearables

论文作者

Singh, Satya P., Lay-Ekuakille, Aimé, Gangwar, Deepak, Sharma, Madan Kumar, Gupta, Sukrit

论文摘要

从可穿戴传感器中准确解码人类活动可以帮助进行与医疗保健和背景意识有关的应用。目前在该域中使用的方法使用复发和/或卷积模型来从多个传感器中捕获时间序列数据的时空特征。我们提出了一个深层的神经网络体系结构,该体系结构不仅捕获了多个传感器时间序列数据的时空特征,还选择了选择通过自我发挥的机制来学习重要的时间点。我们显示了六个公共数据集对不同数据采样策略的拟议方法的有效性,并表明自我发挥的机制使用了经常性和卷积网络的结合,可以在深层网络上显着改善性能。我们还表明,所提出的方法对已测试数据集的先前最新方法具有统计学上显着的性能提高。所提出的方法为在长时间内从多个身体传感器中更好地解码人类活动开辟了途径。该模型的代码实现可在https://github.com/isukrit/encodinghumanactivity上获得。

Decoding human activity accurately from wearable sensors can aid in applications related to healthcare and context awareness. The present approaches in this domain use recurrent and/or convolutional models to capture the spatio-temporal features from time-series data from multiple sensors. We propose a deep neural network architecture that not only captures the spatio-temporal features of multiple sensor time-series data but also selects, learns important time points by utilizing a self-attention mechanism. We show the validity of the proposed approach across different data sampling strategies on six public datasets and demonstrate that the self-attention mechanism gave a significant improvement in performance over deep networks using a combination of recurrent and convolution networks. We also show that the proposed approach gave a statistically significant performance enhancement over previous state-of-the-art methods for the tested datasets. The proposed methods open avenues for better decoding of human activity from multiple body sensors over extended periods of time. The code implementation for the proposed model is available at https://github.com/isukrit/encodingHumanActivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源