论文标题
图像文本同时可视化的多模式关系数据的随机邻居嵌入
Stochastic Neighbor Embedding of Multimodal Relational Data for Image-Text Simultaneous Visualization
论文作者
论文摘要
近年来,多模式的关系数据分析已变得越来越重要,用于探索从社交网络服务(例如Flickr)获得的不同数据领域(例如图像及其文本标签)。已经开发了各种数据分析方法来可视化;举个例子,T-模化邻居嵌入(T-SNE)计算出低维特征向量,以使它们的相似性保持观察到的数据向量的相似性。但是,T-SNE仅针对单个数据域而设计,而不是用于多模式数据。本文旨在可视化多模式关系数据,该数据由与这些向量之间的关系中的多个域中的数据向量组成。通过扩展T-SNE,我们在这里提出了多模式的关系随机邻居嵌入(MR-SNE),(1)首先计算增强关系,在此我们观察到跨域的关系并通过观察到的数据向量计算每个域内的关系,并且(2)共同嵌入增强的关系到低维空间的增强关系。通过具有属性2个数据集的Flickr和动物的可视化,将提出的MR-SNE与其他基于图的嵌入方法进行了比较。 Sne先生展示了有希望的表现。
Multimodal relational data analysis has become of increasing importance in recent years, for exploring across different domains of data, such as images and their text tags obtained from social networking services (e.g., Flickr). A variety of data analysis methods have been developed for visualization; to give an example, t-Stochastic Neighbor Embedding (t-SNE) computes low-dimensional feature vectors so that their similarities keep those of the observed data vectors. However, t-SNE is designed only for a single domain of data but not for multimodal data; this paper aims at visualizing multimodal relational data consisting of data vectors in multiple domains with relations across these vectors. By extending t-SNE, we herein propose Multimodal Relational Stochastic Neighbor Embedding (MR-SNE), that (1) first computes augmented relations, where we observe the relations across domains and compute those within each of domains via the observed data vectors, and (2) jointly embeds the augmented relations to a low-dimensional space. Through visualization of Flickr and Animal with Attributes 2 datasets, proposed MR-SNE is compared with other graph embedding-based approaches; MR-SNE demonstrates the promising performance.