论文标题

关于使用非凸正规化解决SAR成像逆问题,并以库奇的惩罚

On Solving SAR Imaging Inverse Problems Using Non-Convex Regularization with a Cauchy-based Penalty

论文作者

Karakuş, Oktay, Achim, Alin

论文摘要

合成孔径雷达(SAR)图像可以在多种应用中提供有用的信息,包括气候变化,环境监测,气象,高维映射,船舶监测或行星探索。在本文中,我们研究了SAR成像中遇到的许多反问题的解决方案。我们提出了一种凸近近端分裂方法,以优化包括基于库奇的非cauchy惩罚的成本函数。通过仔细选择向前的(FB)算法中的模型参数来确保整体成本函数优化的收敛性。通过解决三个标准的SAR成像反问题,包括超分辨率,图像形成和伪装以及海上应用的船舶唤醒检测,可以评估所提出的惩罚函数的性能。将提出的方法与使用经典惩罚功能(例如总变化($ tv $)和$ L_1 $规范)以及广义的Minimax-Concave(GMC)罚款进行比较。我们表明,与本文所有SAR成像逆问题的参考惩罚函数相比,提出的基于考奇的惩罚功能会导致更好的图像重建结果。

Synthetic aperture radar (SAR) imagery can provide useful information in a multitude of applications, including climate change, environmental monitoring, meteorology, high dimensional mapping, ship monitoring, or planetary exploration. In this paper, we investigate solutions to a number of inverse problems encountered in SAR imaging. We propose a convex proximal splitting method for the optimization of a cost function that includes a non-convex Cauchy-based penalty. The convergence of the overall cost function optimization is ensured through careful selection of model parameters within a forward-backward (FB) algorithm. The performance of the proposed penalty function is evaluated by solving three standard SAR imaging inverse problems, including super-resolution, image formation, and despeckling, as well as ship wake detection for maritime applications. The proposed method is compared to several methods employing classical penalty functions such as total variation ($TV$) and $L_1$ norms, and to the generalized minimax-concave (GMC) penalty. We show that the proposed Cauchy-based penalty function leads to better image reconstruction results when compared to the reference penalty functions for all SAR imaging inverse problems in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源