论文标题
平衡状态,用于自然扩展的自然扩展局部同构的均匀状态
Equilibrium states for natural extensions of non-uniformly expanding local homeomorphisms
论文作者
论文摘要
我们研究了平衡状态的独特性,以自然地扩展具有霍尔德连续潜在功能的拓扑精确,不均匀扩展的局部同态。我们通过应用Climenhaga和Thompson开发的一般技术来做到这一点,并表明分解有自然的条件,可以确保存在独特的平衡状态。然后,我们展示如何将这些结果应用于部分双曲线吸引子。
We examine uniqueness of equilibrium states for the natural extension of a topologically exact, non-uniformly expanding, local homeomorphism with a Hölder continuous potential function. We do this by applying general techniques developed by Climenhaga and Thompson, and show there is a natural condition on decompositions that guarantees that a unique equilibrium state exists. We then show how to apply these results to partially hyperbolic attractors.