论文标题
大规模移动边缘计算的并行最佳任务分配机制
A Parallel Optimal Task Allocation Mechanism for Large-Scale Mobile Edge Computing
论文作者
论文摘要
我们考虑了大规模移动边缘计算(MEC)中智能有效的任务分配机制的问题,这可以减少并行和分布式优化中的延迟和能耗。在本文中,我们研究了联合优化模型,以考虑移动终端(MT),宏观细胞基站(MBS)和多个小型细胞基站(SBS)之间的合作任务管理机制(SBS)。我们提出了一种基于乘数的平行多块交替方向方法(ADMM)方法,以模拟MEC系统中低延迟和低能消耗的要求,该方法将这些要求下的任务分配作为非线性0-1 Integer编程问题。为了解决优化问题,我们开发了基于对数平滑(用于全球变量更新)的结合梯度,牛顿和线性搜索技术的有效组合,以及可确保具有良好计算性量表的局部变量更新方法的环环坐标梯度投影(CBGP,CBGP,用于局部变量更新)。数值结果证明了所提出的机制的有效性,并且可以有效地减少大型MEC系统的延迟和能耗。
We consider the problem of intelligent and efficient task allocation mechanism in large-scale mobile edge computing (MEC), which can reduce delay and energy consumption in a parallel and distributed optimization. In this paper, we study the joint optimization model to consider cooperative task management mechanism among mobile terminals (MT), macro cell base station (MBS), and multiple small cell base station (SBS) for large-scale MEC applications. We propose a parallel multi-block Alternating Direction Method of Multipliers (ADMM) based method to model both requirements of low delay and low energy consumption in the MEC system which formulates the task allocation under those requirements as a nonlinear 0-1 integer programming problem. To solve the optimization problem, we develop an efficient combination of conjugate gradient, Newton and linear search techniques based algorithm with Logarithmic Smoothing (for global variables updating) and the Cyclic Block coordinate Gradient Projection (CBGP, for local variables updating) methods, which can guarantee convergence and reduce computational complexity with a good scalability. Numerical results demonstrate the effectiveness of the proposed mechanism and it can effectively reduce delay and energy consumption for a large-scale MEC system.