论文标题
铁电量子关键性和增强的质质形变形钛酸盐的超导性
Ferroelectric quantum criticality and enhanced superconductivity in plastically deformed strontium titanate
论文作者
论文摘要
量子材料的性能通常使用实验变量(例如压力,磁场和掺杂)调节。在这里,我们探讨了一种不同的方法:单晶的不可逆性塑性变形。我们为超导体SRTIO $ _3 $显示,压缩塑料变形可引起低维超导率,显着高于未构造样品的超导过渡温度($ t_c $),并证明了在温度高于大小的幅度上的超过相关性的迹象,这表明了大小的幅度$ $ t_c $ t_c $。超导性增强与自组织脱位结构的出现相关,如弥漫性中子和X射线散射所示。我们还通过拉曼散射观察了变形引起的量子临界铁电波和非均匀铁电的特征。这些结果表明,围绕自组织的脱位结构的应变会诱导局部铁电性和量子临界动力学,从而强烈影响$ t_c $,这与软性极性波动增强的超导性理论一致。更广泛地说,我们的结果证明了塑性变形和脱位工程的希望,作为操纵量子材料的电子特性的工具。
The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach: irreversible, plastic deformation of single crystals. We show for the superconductor SrTiO$_3$ that compressive plastic deformation induces low-dimensional superconductivity significantly above the superconducting transition temperature ($T_c$) of undeformed samples, with evidence of superconducting correlations at temperatures two orders of magnitude above the bulk $T_c$. The superconductivity enhancement is correlated with the appearance of self-organized dislocation structures, as revealed by diffuse neutron and X-ray scattering. We also observe signatures of deformation-induced quantum-critical ferroelectric fluctuations and inhomogeneous ferroelectric order via Raman scattering. These results suggest that the strain surrounding the self-organized dislocation structures induces local ferroelectricity and quantum-critical dynamics that strongly influence $T_c$, consistent with a theory of superconductivity enhanced by soft polar fluctuations. More broadly, our results demonstrate the promise of plastic deformation and dislocation engineering as tools to manipulate electronic properties of quantum materials.