论文标题
路径和周期中的近似量子分数复兴
Approximate quantum fractional revival in paths and cycles
论文作者
论文摘要
我们启动了图中近似量子分数复兴的研究,图中非常好的量子态转移的概括。我们根据图的特征值和特征向量的邻接矩阵的特征值和特征向量给出了图形中近似复兴的完整表征。这种表征来自于二苯胺近似上的kronecker引起的引理,并且类似于图中相当良好状态转移的光谱表征。使用此过程,我们给出了何时在路径和周期中发生近似分数复兴的完整特征。
We initiate the study of approximate quantum fractional revival in graphs, a generalization of pretty good quantum state transfer in graphs. We give a complete characterization of approximate fractional revival in a graph in terms of the eigenvalues and eigenvectors of the adjacency matrix of a graph. This characterization follows from a lemma due to Kronecker on Diophantine approximation, and is similar to the spectral characterization of pretty good state transfer in graphs. Using this, we give a complete characterizations of when approximate fractional revival can occur in paths and in cycles.