论文标题
伯克霍夫部分的第一回收图
First-return maps of Birkhoff sections of the geodesic flow
论文作者
论文摘要
本文比较了来自给定流量的不同伯克霍夫部分的不同伪-Anosov地图。更确切地说,给定双曲线表面和一系列周期性的测量学,我们研究了那些伯克霍夫截面的单位束上的地球束上的伯克霍夫截面,该截面是由收集界定的表面。我们表明,所有这些表面都有一个规范的识别,并且流动引起的第一笔返回图都可以表达为沿着同一曲线家族的负dehn Twist的组成:只有顺序取决于特定表面的选择。
This paper compares different pseudo-Anosov maps coming from different Birkhoff sections of a given flow. More precisely, given a hyperbolic surface and a collection of periodic geodesics on it, we study those Birkhoff sections for the geodesic flow on the unit bundle to the surface bounded by the collection. We show that there is a canonical identification of all those surfaces, and that the first-return maps induced by the flow can all be expressed as a composition of negative Dehn twists along the same family of curves: only the order depends on the choice of a particular surface.