论文标题

关于HDR近距离放射治疗中MPSD校准的机器学习方法

On the use of machine learning methods for mPSD calibration in HDR brachytherapy

论文作者

Rosales, Haydee M. Linares, Couture, Gabriel, Archambault, Louis, Beddar, Sam, Despres, Philippe, Beaulieu, Luc

论文摘要

目的:我们试图评估使用机器学习算法在高剂量速率近距离放射治疗中使用机器学习算法校准的可行性。方法:剂量测定系统由优化的1毫米核MPSD和紧凑型光电层管的紧凑型组装,并配合二科体镜子和过滤器。 $^{192} $ ir源被远程控制,并将其发送到自制PMMA持有人的各个位置。根据TG-43的建议,进行了覆盖0.5至12 cm源位移范围的剂量测量。使用线性回归模型,随机森林估计器和人工神经网络算法将单个闪烁剂剂量分解。使用不同的样本量和距离源的MPSD系统校准来评估不同算法的性能。结果:解耦方法与预期的TG-43剂量的偏差通常保持在20%以下。但是,相对于TG-43形式主义预测的剂量,使用三种算法的剂量预测准确至7%以内,用于在用于校准的相同距离范围内进行的测量。当预测进行超出用于校准的距离范围之外时,性能随机森林受到损害。线性回归预测的剂量预测对校准条件的影响较小,但偏差更明显。用于培训目的的可用测量数量对随机森林和神经网络模型的影响最大。它们的准确性倾向于从大于100的许多停留位置接近偏差值接近1%。结论:在使用优化的MPSD系统进行HDR近距离近距离治疗剂量测量时,ML算法是用于精确剂量报告和治疗评估的良好替代方法。

Purpose: We sought to evaluate the feasibility of using machine learning algorithms for multipoint plastic scintillator detector calibration in high-dose-rate brachytherapy. Methods: The dosimetry system consisted of an optimized 1-mm-core mPSD and a compact assembly of photomultiplier tubes coupled with dichroic mirrors and filters. An $^{192}$Ir source was remotely controlled and sent to various positions in a homemade PMMA holder. Dose measurements covering a range of 0.5 to 12 cm of source displacement were carried out according to TG-43 recommendations. Individual scintillator doses were decoupled using a linear regression model, a random forest estimator, and artificial neural network algorithms. The performance of the different algorithms was evaluated using different sample sizes and distances to the source for the mPSD system calibration. Results: The decoupling methods' deviations from the expected TG-43 dose generally remained below 20%. However, the dose prediction with the three algorithms was accurate to within 7% relative to the dose predicted by the TG-43 formalism for measurements performed in the same range of distances used for calibration. The performance random forest was compromised when the predictions were done beyond the range of distances used for calibration. The dose prediction by the linear regression was less influenced by the calibration conditions than random forest, but with more significant deviations. The number of available measurements for training purposes influenced the random forest and neural network models the most. Their accuracy tended to converge toward deviation values close to 1% from a number of dwell positions greater than 100. Conclusions: In performing HDR brachytherapy dose measurements with an optimized mPSD system, ML algorithms are good alternatives for precise dose reporting and treatment assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源