论文标题

威尔 - 他们不会 - 他们:一个非常大的数据集,可在Twitter上检测

Will-They-Won't-They: A Very Large Dataset for Stance Detection on Twitter

论文作者

Conforti, Costanza, Berndt, Jakob, Pilehvar, Mohammad Taher, Giannitsarou, Chryssi, Toxvaerd, Flavio, Collier, Nigel

论文摘要

我们提出了一个新的具有挑战性的立场检测数据集,称为Will-they't-they't-they't-wt),其中包含51,284条英语推文,使其成为该类型的最大可用数据集。所有注释均由专家进行;因此,数据集构成了在立场检测中未来研究的高质量和可靠的基准。我们对广泛的最新立场检测系统进行的实验表明,该数据集对该域中的现有模型构成了巨大的挑战。

We present a new challenging stance detection dataset, called Will-They-Won't-They (WT-WT), which contains 51,284 tweets in English, making it by far the largest available dataset of the type. All the annotations are carried out by experts; therefore, the dataset constitutes a high-quality and reliable benchmark for future research in stance detection. Our experiments with a wide range of recent state-of-the-art stance detection systems show that the dataset poses a strong challenge to existing models in this domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源