论文标题
朝着视觉上解释视频理解网络与扰动
Towards Visually Explaining Video Understanding Networks with Perturbation
论文作者
论文摘要
“使黑匣子模型可以解释”是一个至关重要的问题,它伴随着深度学习网络的发展。对于以视觉信息为输入的网络,一种基本但具有挑战性的解释方法是识别和可视化主导网络预测的输入像素/区域。但是,大多数现有作品都专注于解释以单个图像为输入的网络,并且不考虑视频中存在的时间关系。提供一种适用于视频理解网络的多元化结构的易于使用的视觉解释方法仍然是一个开放的挑战。在本文中,我们研究了一种基于通用扰动的方法,用于视觉上解释视频理解网络。此外,我们提出了一种新颖的损失函数,以通过在空间和时间维度上限制其结果的平滑度来增强该方法。该方法可以比较不同网络结构之间的解释结果,并且还可以避免为视频输入生成病理对抗解释。实验比较结果验证了我们方法的有效性。
''Making black box models explainable'' is a vital problem that accompanies the development of deep learning networks. For networks taking visual information as input, one basic but challenging explanation method is to identify and visualize the input pixels/regions that dominate the network's prediction. However, most existing works focus on explaining networks taking a single image as input and do not consider the temporal relationship that exists in videos. Providing an easy-to-use visual explanation method that is applicable to diversified structures of video understanding networks still remains an open challenge. In this paper, we investigate a generic perturbation-based method for visually explaining video understanding networks. Besides, we propose a novel loss function to enhance the method by constraining the smoothness of its results in both spatial and temporal dimensions. The method enables the comparison of explanation results between different network structures to become possible and can also avoid generating the pathological adversarial explanations for video inputs. Experimental comparison results verified the effectiveness of our method.