论文标题

可伸缩的量子计算与二维微框架阵列的快速门计算

Scalable quantum computation with fast gates in two-dimensional microtrap arrays of trapped ions

论文作者

Mehdi, Zain, Ratcliffe, Alexander K., Hope, Joseph J.

论文摘要

从理论上讲,我们研究了在二维微构建体系结构中使用快速脉冲的两分门在被困的离子量子计算中的使用。在一个维度中,在最近的邻居之间使用这种快速的门是最佳的,我们检查对二维几何形状的概括。我们证明,快速脉冲大门能够在相邻陷阱中的离子之间实现高保真纠缠的操作,而诱捕周期比捕获期更快,实验证明了激光重复率。值得注意的是,我们发现,如果不增加门的持续时间,即使在具有数百个离子的大阵列中,高保真门也是可以实现的。为了证明该提案的有用性,我们研究了这些门在40模式费米 - 哈伯德模型的数字模拟中的应用。这也证明了为什么连接任意离子对所需的较短的大门链使该几何形状非常适合大规模计算。

We theoretically investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture. In one dimension, such fast gates are optimal when employed between nearest neighbours, and we examine the generalisation to a two-dimensional geometry. We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period, with experimentally demonstrated laser repetition rates. Notably, we find that without increasing the gate duration, high-fidelity gates are achievable even in large arrays with hundreds of ions. To demonstrate the usefulness of this proposal, we investigate the application of these gates to the digital simulation of a 40-mode Fermi-Hubbard model. This also demonstrates why shorter chains of gates required to connect arbitrary pairs of ions makes this geometry well suited for large-scale computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源