论文标题
完全无序的二维量子步行中的拓扑离域
Topological delocalization in the completely disordered two-dimensional quantum walk
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We investigate numerically and theoretically the effect of spatial disorder on two-dimensional split-step discrete-time quantum walks with two internal "coin" states. Spatial disorder can lead to Anderson localization, inhibiting the spread of quantum walks, putting them at a disadvantage against their diffusively spreading classical counterparts. We find that spatial disorder of the most general type, i.e., position-dependent Haar random coin operators, does not lead to Anderson localization but to a diffusive spread instead. This is a delocalization, which happens because disorder places the quantum walk to a critical point between different anomalous Floquet-Anderson insulating topological phases. We base this explanation on the relationship of this general quantum walk to a simpler case more studied in the literature and for which disorder-induced delocalization of a topological origin has been observed. We review topological delocalization for the simpler quantum walk, using time evolution of the wave functions and level spacing statistics. We apply scattering theory to two-dimensional quantum walks and thus calculate the topological invariants of disordered quantum walks, substantiating the topological interpretation of the delocalization and finding signatures of the delocalization in the finite-size scaling of transmission. We show criticality of the Haar random quantum walk by calculating the critical exponent $η$ in three different ways and find $η$ $\approx$ 0.52 as in the integer quantum Hall effect. Our results showcase how theoretical ideas and numerical tools from solid-state physics can help us understand spatially random quantum walks.