论文标题

具有强烈非线性操作员的广义超谐波功能

Generalized superharmonic functions with strongly nonlinear operator

论文作者

Chlebicka, Iwona, Zatorska-Goldstein, Anna

论文摘要

我们研究了$ \ Mathcal {a} $ - 谐波和$ \ Mathcal {a} $ - 超级谐波功能的属性,涉及具有概括的Orlicz-growth的操作员,除了Orlicz案例外,还具有可变指数的自然范围。特别是,Harnack的原理和最低原则是针对$ \ Mathcal {a} $ - 超级谐波函数和边界harnack不平等的,对于$ \ Mathcal {a} $ - 谐波函数证明了。

We study properties of $\mathcal{A}$-harmonic and $\mathcal{A}$-superharmonic functions involving an operator having generalized Orlicz-growth embracing besides Orlicz case also natural ranges of variable exponent and double-phase cases. In particular, Harnack's Principle and Minimum Principle are provided for $\mathcal{A}$-superharmonic functions and boundary Harnack inequality is proven for $\mathcal{A}$-harmonic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源