论文标题

随机过程的贝叶斯特性与应用的特性

Bayesian Characterizations of Properties of Stochastic Processes with Applications

论文作者

Roy, Sucharita, Bhattacharya, Sourabh

论文摘要

在本文中,我们主要提出了一种新颖的贝叶斯对固定和非组织随机过程的表征。实际上,该理论旨在区分参数和非参数随机过程的全球平稳性和非平稳性。有趣的是,我们的理论是基于我们以前关于无限序列表征的贝叶斯特征的工作,该序列用于验证(以)著名的Riemann假设。因此,就我们提出的想法而言,纯数学和贝叶斯统计数据之间似乎存在有趣而重要的联系。我们通过与不同设置相关的仿真和实际数据实验来验证我们提出的方法。特别是,我们方法的应用包括在各种时间序列模型,时空和时空设置中的平稳性和非平稳性确定以及马尔可夫链蒙特卡洛的收敛诊断。我们的结果表明,即使在非常微妙的情况下,表现也非常令人鼓舞。使用类似的原理,我们还提供了任何数量随机变量之间相互独立性的新型贝叶斯表征,使用这些变量,我们表征了点过程的属性,包括泊松点过程的特征,完全空间随机性,平稳性和非机构性。对充分的泊松和非波森点过程模型的仿真实验的应用再次表明我们提出的想法的表现非常令人鼓舞。我们进一步提出了一种基于我们的一般原理来确定振荡随机过程频率的新型递归贝叶斯方法。由单个和多个频率组成的各种时间序列模型的模拟研究和真实数据实验提出了我们方法的价值。

In this article, we primarily propose a novel Bayesian characterization of stationary and nonstationary stochastic processes. In practice, this theory aims to distinguish between global stationarity and nonstationarity for both parametric and nonparametric stochastic processes. Interestingly, our theory builds on our previous work on Bayesian characterization of infinite series, which was applied to verification of the (in)famous Riemann Hypothesis. Thus, there seems to be interesting and important connections between pure mathematics and Bayesian statistics, with respect to our proposed ideas. We validate our proposed method with simulation and real data experiments associated with different setups. In particular, applications of our method include stationarity and nonstationarity determination in various time series models, spatial and spatio-temporal setups, and convergence diagnostics of Markov Chain Monte Carlo. Our results demonstrate very encouraging performance, even in very subtle situations. Using similar principles, we also provide a novel Bayesian characterization of mutual independence among any number of random variables, using which we characterize the properties of point processes, including characterizations of Poisson point processes, complete spatial randomness, stationarity and nonstationarity. Applications to simulation experiments with ample Poisson and non-Poisson point process models again indicate quite encouraging performance of our proposed ideas. We further propose a novel recursive Bayesian method for determination of frequencies of oscillatory stochastic processes, based on our general principle. Simulation studies and real data experiments with varieties of time series models consisting of single and multiple frequencies bring out the worth of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源