论文标题

通过图像恢复无监督病变检测

Unsupervised Lesion Detection via Image Restoration with a Normative Prior

论文作者

Chen, Xiaoran, You, Suhang, Tezcan, Kerem Can, Konukoglu, Ender

论文摘要

无监督的病变检测是一个具有挑战性的问题,需要准确估算健康解剖结构的规范分布,并在没有训练例子的情况下将病变视为异常值。最近,在深入学习无监督学习的进步之后,这个问题引起了研究界的关注。这种进步允许对高维分布的估计,例如规范性分布,其准确性比以前的方法更高。最近提出的方法的主要方法是学习使用网络参数参数的潜在变异模型,以使用显示健康解剖学的示例图像近似示例图像,以表明健康的解剖学,使用前预测进行区别,即基于liS的图像,即,在lissions中进行了listhondition,即,在lission上进行了范围的模型,即在liss上进行重新构建lisent andent-varent-var var var var artents and var var artents and var var resions。和原始图像。在有希望的同时,先前的投射步骤通常会导致大量的误报。在这项工作中,我们将无监督的病变检测方法作为图像恢复问题,并提出了一个概率模型,该模型使用基于网络的先验作为规范分布,并使用MAP估计检测病变像素。概率模型惩罚了恢复和原始图像之间的巨大偏差,从而减少了像素检测中的假阳性。使用公开可用的数据集中对脑MRI进行神经胶质瘤和中风病变的实验表明,对于胶质瘤和中风检测,所提出的方法的表现优于最先进的无监督方法,+0.13(AUC)。广泛的模型分析证实了基于地图的图像恢复的有效性。

Unsupervised lesion detection is a challenging problem that requires accurately estimating normative distributions of healthy anatomy and detecting lesions as outliers without training examples. Recently, this problem has received increased attention from the research community following the advances in unsupervised learning with deep learning. Such advances allow the estimation of high-dimensional distributions, such as normative distributions, with higher accuracy than previous methods.The main approach of the recently proposed methods is to learn a latent-variable model parameterized with networks to approximate the normative distribution using example images showing healthy anatomy, perform prior-projection, i.e. reconstruct the image with lesions using the latent-variable model, and determine lesions based on the differences between the reconstructed and original images. While being promising, the prior-projection step often leads to a large number of false positives. In this work, we approach unsupervised lesion detection as an image restoration problem and propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation. The probabilistic model punishes large deviations between restored and original images, reducing false positives in pixel-wise detections. Experiments with gliomas and stroke lesions in brain MRI using publicly available datasets show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin, +0.13 (AUC), for both glioma and stroke detection. Extensive model analysis confirms the effectiveness of MAP-based image restoration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源