论文标题

在GDFECO中统一飞秒和皮秒单脉冲磁开关

Unifying femtosecond and picosecond single-pulse magnetic switching in GdFeCo

论文作者

Jakobs, Florian, Ostler, Thomas, Lambert, Charles-Henri, Yang, Yang, Salahuddin, Sayeef, Wilson, Richard B., Gorchon, Jon, Bokor, Jeffrey, Atxitia, Unai

论文摘要

关于通过单光学脉冲在GDFECO合金中的磁开关背后的物理机制仍然存在许多问题。现象学模型表明,飞秒尺度的sublattice磁化化作为开关的驱动机制之间的宽松宽松。通过使用几个皮秒光激光脉冲以及电流脉冲对GDFECO中热诱导的转换的最新观察到了先前的理解。这就提出了一个问题,即是否同一开关力学在Femo和Picsecond尺度上起作用。在这项工作中,我们旨在填补这一空白,以理解热单脉冲切换背后的开关机制。为此,我们研究了GDFECO合金中的实验热单脉冲开关,以使用多种系统参数,例如组成,激光功率和脉冲持续时间。我们使用原子旋转动力学方法对开关动力学提供了定量描述,该方法在模型与我们的实验之间具有良好的一致性,跨越各种参数和时间表,从第一秒到picseconds。此外,我们发现不同的元素特异性阻尼参数是用长皮秒脉冲切换并争论的关键要素,因此,由于GD的较低阻尼常数,因此可以使用脉冲持续时间切换15 picseconds。我们的发现很容易扩展到在其他情况下加快动力学的速度,在其他情况下,已经证明已经证明了Ferrimagnetic GDFECO合金可以显示快速且节能的过程,例如轨道壁运动在轨道和旋转轨道扭矩设备中的旋转扭矩切换中。

Many questions are still open regarding the physical mechanisms behind the magnetic switching in GdFeCo alloys by single optical pulses. Phenomenological models suggest a femtosecond scale exchange relaxation between sublattice magnetization as the driving mechanism for switching. The recent observation of thermally induced switching in GdFeCo by using both several picosecond optical laser pulse as well as electric current pulses has questioned this previous understanding. This has raised the question of whether or not the same switching mechanics are acting at the femo- and picosecond scales. In this work, we aim at filling this gap in the understanding of the switching mechanisms behind thermal single-pulse switching. To that end, we have studied experimentally thermal single-pulse switching in GdFeCo alloys, for a wide range of system parameters, such as composition, laser power and pulse duration. We provide a quantitative description of the switching dynamics using atomistic spin dynamics methods with excellent agreement between the model and our experiments across a wide range of parameters and timescales, ranging from femtoseconds to picoseconds. Furthermore, we find distinct element-specific damping parameters as a key ingredient for switching with long picosecond pulses and argue, that switching with pulse durations as long as 15 picoseconds is possible due to a low damping constant of Gd. Our findings can be easily extended to speed up dynamics in other contexts where ferrimagnetic GdFeCo alloys have been already demonstrated to show fast and energy-efficient processes, e.g. domain-wall motion in a track and spin-orbit torque switching in spintronics devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源