论文标题

观察量子相变的出现 - 外壳

Observing the emergence of a quantum phase transition -- shell by shell

论文作者

Bayha, Luca, Holten, Marvin, Klemt, Ralf, Subramanian, Keerthan, Bjerlin, Johannes, Reimann, Stephanie M., Bruun, Georg M., Preiss, Philipp M., Jochim, Selim

论文摘要

多体物理学描述了一个现象,而这种现象是无法理解的,而这些现象仅是单独观察系统成分的现象。惊人的表现是破碎的对称性,相变和集体激发。几十年来,了解从单个粒子组装系统时,如何在各个粒子中组装系统一直是原子,核和固态物理学的视野。在这里,我们观察到从正常相到超氟相的量子相变的几个体体前体。过渡是通过与顺序参数的振幅振动相关的模式的软化发出信号的,该模式通常称为希格斯模式。我们对局限于二维谐波电势的超低费尔米(Ultracold Fermions)进行精美的控制,并在高富度的基础状态下制备2、6和12个费米原子的闭合壳构型。然后在我们的介观系统上进行光谱法,同时调整对零的能量比壳间距大。使用完整的原子计数统计数据,我们发现最低的共振仅由相干兴奋的对组成。这种多体激发以及与数值计算的比较的独特的非单调相互作用依赖性使我们能够将其识别为希格斯模式的前体。我们的原子模拟器为系统地揭示集体现象的出现和粒子的热力学极限粒子的出现开辟了新的途径。

Many-body physics describes phenomena which cannot be understood looking at a systems' constituents alone. Striking manifestations are broken symmetry, phase transitions, and collective excitations. Understanding how such collective behaviour emerges when assembling a system from individual particles has been a vision in atomic, nuclear, and solid-state physics for decades. Here, we observe the few-body precursor of a quantum phase transition from a normal to a superfluid phase. The transition is signalled by the softening of the mode associated with amplitude vibrations of the order parameter, commonly referred to as a Higgs mode. We achieve exquisite control over ultracold fermions confined to two-dimensional harmonic potentials and prepare closed-shell configurations of 2, 6 and 12 fermionic atoms in the ground state with high fidelity. Spectroscopy is then performed on our mesoscopic system while tuning the pair energy from zero to being larger than the shell spacing. Using full atom counting statistics, we find the lowest resonance to consist of coherently excited pairs only. The distinct non-monotonic interaction dependence of this many-body excitation as well as comparison with numerical calculations allows us to identify it as the precursor of the Higgs mode. Our atomic simulator opens new pathways to systematically unravel the emergence of collective phenomena and the thermodynamic limit particle by particle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源