论文标题

最小的拉格朗日摩尔和动作角度坐标

Minimal Lagrangian tori and action-angle coordinates

论文作者

Oliveira, Gonçalo, Sena-Dias, Rosa

论文摘要

我们调查了哪些$ n $维圆环动作的轨道在$ 2N $二维的折叠式福利kähler歧管$ m $中很少。换句话说,我们研究了最小的亚曼福尔德,这些submanifolds似乎是矩形kähler歧管上的瞬间图的纤维。在其他问题中,我们调查并给出部分答案:(1)存在多少这种Lagrangian Tori? (2)仅仅从环境几何形状来表征它们的稳定性,作为区域功能的临界点吗? (3)鉴于感谢您的旋转歧管(对于哪一组轨道$ s $),是否有兼容的感谢您的Kähler指标,其最小的Lagrangian Orbits集为$ S $?

We investigate which orbits of an $n$-dimensional torus action on a $2n$-dimensional toric Kähler manifold $M$ are minimal. In other words, we study minimal submanifolds appearing as the fibres of the moment map on a toric Kähler manifold. Amongst other questions we investigate and give partial answers to the following: (1) How many such minimal Lagrangian tori exist? (2) Can their stability, as critical points of the area functional, be characterised just from the ambient geometry? (3) Given a toric symplectic manifold, for which sets of orbits $S$, is there a compatible toric Kähler metric whose set of minimal Lagrangian orbits is $S$?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源