论文标题

集团:在短文本对话中检索生成合奏模型的对抗性学习

EnsembleGAN: Adversarial Learning for Retrieval-Generation Ensemble Model on Short-Text Conversation

论文作者

Zhang, Jiayi, Tao, Chongyang, Xu, Zhenjing, Xie, Qiaojing, Chen, Wei, Yan, Rui

论文摘要

对于人类计算机对话系统来说,产生定性响应一直是一个挑战。现有的对话系统通常来自基于检索或基于生成的方法,它们都有自己的利弊。尽管有两者的合奏模型的自然想法,但现有的集合方法仅着眼于利用一种方法来增强另一种方法,但我们认为,可以通过适当的训练策略进一步增强它们。在本文中,我们提出了Ensembergan,这是一个对抗性学习框架,用于在开放域对话方案中增强检索生成合奏模型。它由类似语言模式的生成器,排好发电机和一个排名歧视器组成。为了产生近似地面真相并获得歧视者的高排名分数的响应,两个生成器学会了分别产生改进的高度相关的响应和竞争性的未观察到的候选者,而鉴别排名者则经过培训,而训练有素,可以从两种生成器的对抗者中识别出真正的反应。大型短文本会话数据的实验结果证明了整体对人类和自动评估指标的有效性。

Generating qualitative responses has always been a challenge for human-computer dialogue systems. Existing dialogue systems generally derive from either retrieval-based or generative-based approaches, both of which have their own pros and cons. Despite the natural idea of an ensemble model of the two, existing ensemble methods only focused on leveraging one approach to enhance another, we argue however that they can be further mutually enhanced with a proper training strategy. In this paper, we propose ensembleGAN, an adversarial learning framework for enhancing a retrieval-generation ensemble model in open-domain conversation scenario. It consists of a language-model-like generator, a ranker generator, and one ranker discriminator. Aiming at generating responses that approximate the ground-truth and receive high ranking scores from the discriminator, the two generators learn to generate improved highly relevant responses and competitive unobserved candidates respectively, while the discriminative ranker is trained to identify true responses from adversarial ones, thus featuring the merits of both generator counterparts. The experimental results on a large short-text conversation data demonstrate the effectiveness of the ensembleGAN by the amelioration on both human and automatic evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源