论文标题
关于树木图表的连通性
On the Connectivity of Token Graphs of Trees
论文作者
论文摘要
让$ k $和$ n $是整数,这样$ 1 \ leq k \ leq n-1 $,让$ g $是订单$ n $的简单图表。 $ k $ token Graph $ f_k(g)$ g $是$ v(g)$的$ k $ -subsets的图形,每当它们的对称差为$ g $的边缘时,两个顶点在$ f_k(g)$中相邻。在本文中,我们表明,如果$ g $是一棵树,则$ f_k(g)$的连接等于$ f_k(g)$的最低度。
Let $k$ and $n$ be integers such that $1\leq k \leq n-1$, and let $G$ be a simple graph of order $n$. The $k$-token graph $F_k(G)$ of $G$ is the graph whose vertices are the $k$-subsets of $V(G)$, where two vertices are adjacent in $F_k(G)$ whenever their symmetric difference is an edge of $G$. In this paper we show that if $G$ is a tree, then the connectivity of $F_k(G)$ is equal to the minimum degree of $F_k(G)$.