论文标题
大型傅立叶系数的半数重量模块化形式
Large Fourier coefficients of half-integer weight modular forms
论文作者
论文摘要
本文涉及位于加号空间中的半含量的尖峰形式(不一定是特征形式)的傅立叶系数。我们可以轻松证明,有许多基本的判别剂$ d $,使得在$ | d | $上评估的傅立叶系数是非零的。通过调整共振方法,我们还证明了这种傅立叶系数必须具有很大的值。
This article is concerned with the Fourier coefficients of cusp forms (not necessarily eigenforms) of half-integer weight lying in the plus space. We give a soft proof that there are infinitely many fundamental discriminants $D$ such that the Fourier coefficients evaluated at $|D|$ are non-zero. By adapting the resonance method, we also demonstrate that such Fourier coefficients must take quite large values.