论文标题
在多个城市进行热舒适预测的转移学习
Transfer Learning for Thermal Comfort Prediction in Multiple Cities
论文作者
论文摘要
HVAC(供暖,通风和空调)系统是建筑物的重要组成部分,该建筑物最多占建筑能源使用的40%。 HVAC保持适当的热舒适度的主要目的对于最佳利用能量使用至关重要。此外,热舒适对于幸福感,健康和工作生产力也至关重要。最近,数据驱动的热舒适模型的性能比传统的基于知识的方法更好(例如预测的平均投票模型)。准确的热舒适模型需要室内居住者的大量自我报告的热舒适数据,这无疑仍然是研究人员的挑战。在这项研究中,我们旨在解决此数据差问题并提高热舒适性预测的性能。我们利用来自同一气候区域的多个城市的传感器数据来学习热舒适模式。我们提供了来自同一气候区(TL-MLP-C*)的基于转移学习的多层感知模型,以进行准确的热舒适性预测。在Ashrae RP-884上,Scales项目和中型办公室数据集的广泛实验结果表明,所提出的TL-MLP-C*的性能超过了准确性,精度和F1得分的最新方法。
HVAC (Heating, Ventilation and Air Conditioning) system is an important part of a building, which constitutes up to 40% of building energy usage. The main purpose of HVAC, maintaining appropriate thermal comfort, is crucial for the best utilisation of energy usage. Besides, thermal comfort is also crucial for well-being, health, and work productivity. Recently, data-driven thermal comfort models have got better performance than traditional knowledge-based methods (e.g. Predicted Mean Vote Model). An accurate thermal comfort model requires a large amount of self-reported thermal comfort data from indoor occupants which undoubtedly remains a challenge for researchers. In this research, we aim to tackle this data-shortage problem and boost the performance of thermal comfort prediction. We utilise sensor data from multiple cities in the same climate zone to learn thermal comfort patterns. We present a transfer learning based multilayer perceptron model from the same climate zone (TL-MLP-C*) for accurate thermal comfort prediction. Extensive experimental results on ASHRAE RP-884, the Scales Project and Medium US Office datasets show that the performance of the proposed TL-MLP-C* exceeds the state-of-the-art methods in accuracy, precision and F1-score.