论文标题

通过使用透明的巨大页面来朝更快的推理器

Towards Faster Reasoners By Using Transparent Huge Pages

论文作者

Fichte, Johannes K., Manthey, Norbert, Stecklina, Julian, Schidler, André

论文摘要

各种最新的自动推理(AR)工具在研究知识表示和推理以及工业应用中广泛用作后端工具。在测试和验证中,这些工具通常会连续或每晚运行。在这项工作中,我们提出了一种方法,可以将AR工具的运行时间平均降低10%,而长期运行任务最多可将AR工具的运行时间降低20%。我们的改进解决了AR工具中使用的数据结构所带来的高内存使用情况,这些数据结构基于冲突驱动的无良好学习。我们通过更有效地使用现代硬件的内存缓存线来建立一种启用内存访问的一般方法。因此,我们通过动态使用名为“大页面”的内存管理功能来扩展标准C库(GLIBC)。大型页面允许减少在操作系统的虚拟内存和硬件物理内存之间转换内存地址所需的开销。这样,我们可以通过将工具与该新的GLIBC库进行编译时,可以减少AR工具和应用具有相似内存访问模式的AR工具和应用程序的运行时,成本和能耗。在每天的工业应用中,这很容易允许在计算中更环保。为了支持声称的加速,我们为AR社区中常用的工具提供了实验结果,包括域ASP,BMC,MaxSat,SAT和SMT。

Various state-of-the-art automated reasoning (AR) tools are widely used as backend tools in research of knowledge representation and reasoning as well as in industrial applications. In testing and verification, those tools often run continuously or nightly. In this work, we present an approach to reduce the runtime of AR tools by 10% on average and up to 20% for long running tasks. Our improvement addresses the high memory usage that comes with the data structures used in AR tools, which are based on conflict driven no-good learning. We establish a general way to enable faster memory access by using the memory cache line of modern hardware more effectively. Therefore, we extend the standard C library (glibc) by dynamically allowing to use a memory management feature called huge pages. Huge pages allow to reduce the overhead that is required to translate memory addresses between the virtual memory of the operating system and the physical memory of the hardware. In that way, we can reduce runtime, costs, and energy consumption of AR tools and applications with similar memory access patterns simply by linking the tool against this new glibc library when compiling it. In every day industrial applications this easily allows to be more eco-friendly in computation. To back up the claimed speed-up, we present experimental results for tools that are commonly used in the AR community, including the domains ASP, BMC, MaxSAT, SAT, and SMT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源