论文标题

英国智能高速公路上的主要和次要事故的非参数霍克斯进程模型

A non-parametric Hawkes process model of primary and secondary accidents on a UK smart motorway

论文作者

Kalair, Kieran, Connaughton, Colm, Di Loro, Pierfrancesco Alaimo

论文摘要

在2017 - 18年期间,在12个月的时间内,自我激发的时空点过程适合来自英国国家交通信息服务的事件数据,以对M25高速公路上的主要和次要事故发生率进行建模。此过程使用背景组件来表示主要事故,以及一个自我激发的组件来表示次要事故。背景由定期和每周的组件,空间组件和长期趋势组成。自我激发的组件是衰减的空间和时间的单向功能。这些组件是通过内核平滑和可能性估计来确定的。在时间上,背景在整个季节都保持稳定,每天的双峰结构反映通勤模式。在空间上,强度有两个峰,其中一个在研究期间变得更加明显。自我激发分别占数据的6-7%,相关的时间和长度尺度分别为100分钟和1公里。进行样本和样本外验证以评估模型拟合。当我们将数据限制为导致网络上大幅下降的事件时,结果仍然连贯。

A self-exciting spatio-temporal point process is fitted to incident data from the UK National Traffic Information Service to model the rates of primary and secondary accidents on the M25 motorway in a 12-month period during 2017-18. This process uses a background component to represent primary accidents, and a self-exciting component to represent secondary accidents. The background consists of periodic daily and weekly components, a spatial component and a long-term trend. The self-exciting components are decaying, unidirectional functions of space and time. These components are determined via kernel smoothing and likelihood estimation. Temporally, the background is stable across seasons with a daily double peak structure reflecting commuting patterns. Spatially, there are two peaks in intensity, one of which becomes more pronounced during the study period. Self-excitation accounts for 6-7% of the data with associated time and length scales around 100 minutes and 1 kilometre respectively. In-sample and out-of-sample validation are performed to assess the model fit. When we restrict the data to incidents that resulted in large speed drops on the network, the results remain coherent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源